King Fahd University of Petroleum & Minerals Department of Information and Computer Science

Solution

Question	1	2	3	4	5	6	7	8	Total
Max	5	10	5	5	10	10	10	45	100
Earned									

Question 1: [5 Points] [CLO 1] Propositional Logic

State the contrapositive of the conditional statement: "If n² is even, then n is even."

If n is odd then n^2 is odd.

Question 2: [10 Points] [CLO 2] Introduction to Proofs Given that n is integer. Prove that if $n^3 + 5$ is odd then n is even.

Prove by contraposition: we need to prove If n is odd then $n^3 + 5$ is even. n = 2k + 1. So $n^3 + 5 = (2k+1)^3 + 5 = 8k^3 + 12k^2 + 6k + 6 = 2(4k^3 + 6k^2 + 3k + 3) = 2r$. This shows that $n^3 + 5$ is even. This completes the proof of the contraposition. So this proves that If n3 + 5 is odd then n is even.

Question 3: [5 points] [CLO 1] Predicates and Quantifies

Let p(x) and q(x, y) be the predicates p(x): x is in our class, q(x, y): x knows y, where the domain of x and y is the set of all students in KFUPM. Translate the following to English: $\exists x \forall y [(p(y) \rightarrow \neg q(x, y)]$

There exist a student who does not know any student in our class.

Question 4: [5 points] [CLO 1] Predicates and Quantifies

Let h(x, y) be the statement x can help y, where the domain consists of all people in the world. Use quantifier to express the statement: "Every one can be helped by somebody". $\forall y \exists x h(x, y)$

Question 5: [10 points] [CLO 2] Introduction to Proofs

Use the logical equivalence laws to show that $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$ is a tautology. Clearly show all steps. (Do not use truth tables)

Proof:
$$[(p \rightarrow q) \land \neg q] \rightarrow \neg p$$
Implication Definition $\equiv \neg [(\neg p \lor q) \land \neg q] \lor \neg p$ Implication Definition $\equiv \neg [(\neg p \lor q) \land \neg q] \lor \neg p$ DeMorgan's $\equiv ((\neg \neg p \land q) \lor \neg \neg q) \lor \neg p$ DeMorgan's $\equiv ((p \land \neg q) \lor q) \lor \neg p$ Double Negation (twice) $\equiv \neg p \lor (q \lor (p \land \neg q))$ Commutative (three times) $\equiv \neg p \lor (q \lor p) \land (q \lor \neg q))$ Distributive $\equiv \neg p \lor (q \lor p) \land T)$ Negation $\equiv \neg p \lor (p \lor q)$ Domination $\equiv \neg p \lor (p \lor q)$ Domination $\equiv q \lor (\neg p \lor p)$ Associative/ Commutative $\equiv q \lor T$ Negation $\equiv T$ Domination law $\because [(p \rightarrow q) \land \neg p) \Rightarrow \neg p$ is a tautology

Solution

Question 6: [10 points] [CLO 2] Rules of Inference and Proof

Using the inference rules and equivalences show that the premises $(p \land t) \rightarrow (r \lor s), q \rightarrow (u \land t)$, $u \rightarrow p$, and $\neg s$ imply the conclusion that $q \rightarrow r$. Given [01] $q \rightarrow (u \land t)$ Premise [02] $(p \land t) \rightarrow (r \lor s)$ Premise [03] −s Premise $[04] u \rightarrow p$ **Premise** Want to show $q \rightarrow r$ Proof $[05] q \rightarrow u$ Simplification on [01] as $q \rightarrow (u \wedge t)$ is equivalent to $(q \rightarrow u) \wedge (q \rightarrow t)$ Simplification on [01] as $q \rightarrow (u \wedge t)$ is equivalent to $(q \rightarrow u) \wedge (q \rightarrow t)$ $[06] q \rightarrow t$ Hypothetical Syllogism on [05] and [04] [07] $q \rightarrow p$

Conjunction on [07] and [06] [08] $q \rightarrow (p \land t)$

[09] $(p \land t) \rightarrow r$ Disjunctive Syllogism on [02] and [03]

Proof Hypothetical Syllogism on [08] and [09] [10] $q \rightarrow r$

A second approach

[05]	q	Assumption
[06]	u∧t	Modus Ponens on [05] and [01]
[07]	u	Simplification on [06]
[08]	t	Simplification on [06]
[09]	р	Modus Ponens on [07] and [04]
[10]	(p ∧ t)	Conjunction on [09] and [08]
[11]	(r ∨ s)	Modus Ponens on [10] and [02]
[12]	r	Disjunctive Syllogism on [11] and [03]
[13]	$q \rightarrow r$	Proof [05] and [12]

Question 7: [10 points] [CLO 2] Set identities Using set identities prove: $A \cup B = (A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)$

$(A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)$	Premise
$= (A \cap \overline{B}) \cup [(A \cup \overline{A}) \cap B]$	Distributive
$= (\mathbf{A} \cap \overline{\mathbf{B}}) \cup (\mathbf{U} \cap \mathbf{B})$	Complement
$= (A \cap \overline{B}) \cup B$	Identity
$= (A \cup B) \cap (\overline{B} \cup B)$	Distributive
$= (\mathbf{A} \cup \mathbf{B}) \cap \mathbf{U}$	Complement
$= (\mathbf{A} \cup \mathbf{B}) \cap \mathbf{U}$	Identity

Question 8: [45 Points] [CLO #1] Indicate whether the given sentence is true or false. In the answer column write either \checkmark for "true" or \times for "false".

Statement	Answer
1. Not every set is a subset of itself.	×
2. if A and B are two sets with different power sets then A \neq B.	✓
3. If A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h} then A - B = { }.	✓
4. $A - B = \{x \mid x \in A \land x \notin B\}.$	✓
5. Two sets are called disjoint if their intersection is the empty set	· 🗸
6. $\overline{A \cap B} = \{x \mid \neg (x \in A \land x \in B)\}$	✓
 If The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 1010101010, respectively, then the intersection of these sets is 	
8. A function f is decreasing if $\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$.	✓
9. If f is the function from \mathbb{Z} to \mathbb{Z} with $f(x) = x + 1$ then f is invertib	e. 🗸
10. $\lfloor x \rfloor = n$ if and only if $x \le n < x + 1$.	×
11. $f(n) = 1/(n^2 - 4)$ is not a function from \mathbb{Z} to \mathbb{R}	✓
12. $f(n) = \lfloor n/2 \rfloor$ from \mathbb{Z} to \mathbb{Z} is not one-to-one function.	\checkmark
13. The function $f(x) = -3x^2 + 7$ from \mathbb{R} to \mathbb{R} is neither one-to-one r it is not a bijection.	or onto, therefore 🗸 🗸
14. If $f(x) = x^2 + 1$ and $g(x) = x + 2$ are functions from \mathbb{R} to \mathbb{R} then (f	o g) is $x^2 + 4x + 5$.
15. One way to express the statement "Every user has access to an mailbox." using predicates, quantifiers, and logical connectives ∀x(user (x) → ∃y(electronic_mailbox (y) ∧ has_access(x, y)))	
16. There are 64 rows appear in the truth table for the compound $(p \rightarrow r) \lor (\neg s \rightarrow \neg t) \lor (\neg u \rightarrow v)$.	oropositions 🗸
17. (p ∨ q ∨ r) ∧ (¬p ∨¬q ∨¬r) is true when at least one of p, q, and one is false, but is false when all three variables have the same	
18. ¬(p \rightarrow q) \rightarrow p is a tautology.	✓
19. ¬(p \leftrightarrow q) and p \leftrightarrow ¬q are not logically equivalent.	×
20. Given the domain is the real numbers, the statement $\forall y \neq 0$ (y "The cube of every nonzero real number is nonzero."	$3 \neq 0$) means \checkmark
21. If the domain for all variables consists of all integers then $\forall x \exists y$	(y ² = x). x

	EQUIVALENCES AND IMPLICATION EQUIVALENCES	RULES
	Double negation law: $\neg (\neg p) \equiv p$	р
	Identity laws: $p \lor \mathbf{F} \equiv p$, $p \land \mathbf{T} \equiv p$	$\therefore p \lor q$
	Domination laws: $p \lor \mathbf{T} \equiv \mathbf{T}, p \land \mathbf{F} \equiv \mathbf{F}$	$p \wedge q$
	Negation laws: $p \lor \neg p \equiv \mathbf{T}, p \land \neg p \equiv \mathbf{F}$	
	Idempotent laws: $p \lor p \equiv p, p \land p \equiv p$	p
	Commutative laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$	q
	Associative laws: $p \lor (q \lor r) \equiv (p \lor q) \lor r$,	$\therefore p \land q$
	$p \land (q \land r) \equiv (p \land q) \land r$	p
	Distributive laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$,	$p \rightarrow q$
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	∴ q
	Absorption laws: $p \lor (p \land q) \equiv p$, $p \land (p \lor q) \equiv p$	$\neg q$
	DeMorgan's laws: $\neg (p \lor q) \equiv \neg p \land \neg q$,	$p \rightarrow q$
	$\neg (p \land q) \equiv \neg p \lor \neg q$	∴ –p
		$p \rightarrow q$
	1. $p \rightarrow q \equiv \neg p \lor q$	<i>q</i> → <i>i</i>
	2. $p \rightarrow q \equiv \neg q \rightarrow \neg p$	$\therefore p \rightarrow i$
	3. $p \lor q \equiv \neg p \rightarrow q$	$p \lor q$
	4. $p \land q \equiv \neg(p \rightarrow \neg q)$	p
	5. $\neg(p \rightarrow q) \equiv p \land \neg q$	∴ q
	6. $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$	$p \lor q$ $\neg p \lor$
	7. $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$	
	8. $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$	$\therefore q \lor r$
	9. $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$	
	10. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	
	11. $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$	
	12. $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$	
	13. $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$	
Odus ponens		1

RULES OF	INFERENCE
р	
$\therefore p \lor q$	(Addition)
$p \wedge q$	
	(Simplification)
p	
q	
	(Continuention)
	(Conjunction)
p p	
$p \rightarrow q$	
· a	(Modus ponens)
$\neg q$	(mouns ponens)
$p \rightarrow q$	
$p \rightarrow q$	
	(Modus tollens)
$p \rightarrow q$	`````
$q \rightarrow r$	
$\therefore p \rightarrow r$	(Hypothetical syllogism)
$p \lor q$	
$\neg p$	
∴ q	(Disjunctive syllogism)
$p \lor q$	
$\neg p \lor r$	
$\therefore q \lor r$	(Resolution)

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws